紫外可见分光光度计(紫外光谱仪)

大家好,今天小编来为大家解答以下的问题,关于紫外可见分光光度计,紫外光谱仪这个很多人还不知道,现在让我们一起来看看吧!

紫外可见光分光光度计可以用来测什么

主要是指测试的波长范围的不同,紫外可见分光光度计的波长范围一般是190~1100nm,而可见的范围只有330~1000nm,可见风光光度计的光源一般是钨灯,而紫外的光源除了钨灯还多一个氘灯用来发射190~330的紫外区的光。紫外可见风光光度计可以做紫外区和可见区的测试,而可见分光光度计只能做可见光区域的测试。

紫外—可见分光光度计

一、基本原理

紫外—可见吸收光谱是在电磁辐射作用下,由宝石中原子、离子、分子的价电子和分子轨道上的电子在电子能级间的跃迁而产生的一种分子吸收光谱。具不同晶体结构的各种彩色宝石,其内所含的致色杂质离子对不同波长的入射光具有不同程度的选择性吸收,由此构成测试基础。按所吸收光的波长区域不同,分为紫外分光光度法和可见分光光度法,合称为紫外—可见分光光度法。

在宝石晶体中,电子是处在不同的状态下,并且分布在不同的能级组中,若晶体中一个杂质离子的基态能级与激发态能级之间的能量差,恰好等于穿过晶体的单色光能量时,晶体便吸收该波长的单色光,使位于基态的一个电子跃迁到激发态能级上,结果在晶体的吸收光谱中产生一个吸收带,便形成紫外可见吸收光谱。宝石测试中常见三种紫外可见吸收光谱类型:

1.d电子跃迁吸收光谱

过渡金属离子为d电子在不同d轨道能级间的跃迁,吸收紫外和可见光能量而形成紫外可见吸收光谱。这些吸收谱峰受配位场影响较大。d-d跃迁光谱有一个重要特点,即配位体场的强度对d轨道能级分裂的大小影响很大,从而也就决定了光谱峰的位置。如红宝石、祖母绿的紫外可见吸收光谱。

2.f电子跃迁吸收光谱

与过渡金属离子的吸收显著不同,镧系元素离子具有特征的吸收锐谱峰。这些锐谱峰的特征与线状光谱颇为相似。这是因为4f轨道属于较内层的轨道,由于外层轨道的屏蔽作用,使4f轨道上的f电子所产生的f-f跃迁吸收光谱受外界影响相对较小所致。如蓝绿色磷灰石、人造钇铝榴石(见图2-2-26)、稀十红玻璃等。

图2-2-26人造钇铝榴石的可见/近红外吸收光谱

3.电荷转移(迁移)吸收光谱

在光能激发下,分子中原定域在金属M轨道上的电荷转移到配位体L的轨道,或朝相反方向转移。这种导致宝石中的电荷发生重新分布,使电荷从宝石中的一部分转移至另一部分而产生的吸收光谱称为电荷转移光谱。电荷转移所需的能量比d-d跃迁所需的能量多,因而吸收谱带多发生在紫外区或可见光区。如山东蓝宝石。

二、紫外—可见分光光度计的类型

紫外—可见分光光度计类型很多,但归纳为三种类型,即单光束分光光度计、双光束分光光度计和双波长分光光度计。以下仅介绍宝石测试中常用的双光束分光光度计(见图2-2-27)。

经单色器分光后经反射镜分解为强度相等的两束光,一束通过参比池,一束通过样品池。光度计能自动比较两束光的强度,此比值即为试样的透射比,经对数变换将它转换成吸光度并作为波长的函数记录下来。双光束分光光度计一般都能自动记录吸收光谱曲线。由于两束光同时分别通过参比池和样品池,还能自动消除光源强度变化所引起的误差。

图2-2-27紫外—可见分光光度计

三、测试方法

用于宝石的测试方法可分为两类,即直接透射法和反射法。

(一)直接透射法

将宝石样品的光面或戒面(让光束从宝石戒面的腰部一侧穿过)直接置于样品台上,获取天然宝石或某些人工处理宝石的紫外可见吸收光谱。直接透射法虽属无损测试方法,但从中获得有关宝玉石的相关信息十分有限,特别在遇到不透明宝石或底部包镶的宝石饰品时,则难以测其吸收光谱。由此限制了紫外可见吸收光谱的进一步应用。

(二)反射法

利用紫外—可见分光光度计的反射附件(如镜反射和积分球装置),有助于解决直接透射法在测试过程中所遇到的问题,由此拓展紫外可见吸收光谱的应用范围。

四、宝石学应用

1.检测人工优化处理宝石

例如,利用直接透射法或反射法,能有效地区分天然蓝色钻石与人工辐照处理蓝色钻石。前者由杂质B原子致色,紫外可见吸收光谱表征为,从540nm至长波方向,可见吸收光谱的吸收率递增。后者则出现GR1心/741nm(辐射损伤心),并伴有N2+N3/415nm(杂质N原子心)吸收光谱(见图2-2-28)。

图2-2-28辐照处理钻石的可见吸收光谱

又例如,利用反射法,能有效地区分天然绿松石与人工染色处理绿松石,前者由Fe、Cu水合离子致色,在可见吸收光谱中显示宽缓的吸收谱带(Cu2+:2E→2T2;Fe3+:6A1→4E+4A1),后者则无或微弱。

2.区分某些天然与合成宝石

例如,水热法合成红色绿柱石显示特征的Co、Fe元素致可见吸收光谱。反之,天然红色绿柱石仅显示Fe及Mn元素致可见吸收光谱。

3.探讨宝石呈色机理

例如山东黄色蓝宝石中Fe3+为主要的致色离子,在其紫外可见吸收光谱中,02-→Fe3+电荷转移带尾部明显位移至可见光紫区内,并与Fe3+晶体场谱带部分叠加。据此认为,山东黄色蓝宝石的颜色,主要归因为O2-→Fe3+电荷转移与Fe3+的d-d电子跃迁联合作用所致。

紫外分光光度计与紫外可见分光光度计的区别是什么

紫外分光光度计与紫外可见分光光度计的区别:

1、测量的范围不同:

(1)紫外分光光度计量程为200nm~600nm间(包括部分可见光)。

(2)紫外可见分光光度计量程为200nm~1000nm。

2、所用灯不同:

(1)紫外光区通常用氢灯或氘灯。

(2)见光区通常用钨灯或卤钨灯。

3、原理不同:

(1)紫外分光光度计,就是根据物质的吸收光谱研究物质的成分、结构和物质间相互作用的有效手段。

(2)紫外-可见分光光度计是基于紫外可见分光光度法原理,利用物质分子对紫外可见光谱区的辐射吸收来进行分析的一种分析仪器。

扩展资料

紫外-可见分光光度计的结构与功能:

由光源、单色器、吸收池、检测器和信号显示系统五大部分组成。

(1)光源:是提供符合要求的入射光的装置,有热辐射光源和气体放电光源两类。热辐射光源用于可见光区,一般为钨灯和卤钨灯,波长范围是350~1000nm;气体放电光源用于紫外光区,一般为氢灯和氘灯,连续波长范围是180~360nm。

(2)单色器:功能是将光源产生的复合光分解为单色光和分出所需的单色光束,它是分光光度计的心脏部分。

(3)吸收池:又称比色皿,供盛放试液进行吸光度测量之用,其底及两侧为毛玻璃,另两面为光学透光面,为减少光的反射损失,吸收池的光学面必须完全垂直于光束方向。根据材质可分为玻璃池和石英池两种,前者用于可见光光区测定,后者用于紫外光区。

(4)检测器:是将光信号转变为电信号的装置,测量吸光度时,并非直接测量透过吸收池的光强度,而是将光强度转换为电流信号进行测试,这种光电转换器件称为检测器。

(5)信号显示系统:是将检测器输出的信号放大,并显示出来的装置。

参考资料来源:百度百科-紫外分光光度计

百度百科-紫外-可见分光光度计

紫外分光光度计和可见分光光度计是什么区别

首先在测定波长范围有所不同:紫外一般用氢灯,测定波长范围180~350nm,可见一般用钨灯,测定波长范围320~1000nm。所谓紫外可见分光光度计也就是说这个仪器可以更换光源,能够测定吸收峰在紫外和可见光部分的化合物。

发现吸光度超过2,便不再显示,是正常现象。

吸光度是透光率的负对数,吸光度超过2就是说透光率小于1%,低于仪器的检出限,就不再显示了。

至于能不能用分光光度计,取决于你测定的波长。

具体来说分为以下三点:

1、光学器件的不同:由于玻璃能吸收紫外波,而对可见到近红外端有比较好的透过性,所以可见分光光度计的一些光学部件可以使用玻璃,而紫外可见分光光度计就不能使用玻璃部件,一般使用石英光学部件。同时由于这个原因,在比色皿的选择上也就有不同了,可见分光光度计可以使用玻璃制的比色皿,而紫外可见分光光度计一般使用石英制的比色皿了。

2、光源不同:可见分光光度计的光源一般只用钨灯,而紫外可见分光光度计是用钨灯+氘灯两个光源,同时还多了这两个光源灯的切换部件。这是因为钨灯的光谱范围主要在可见到近红外这段,氘灯主要在紫外端。也正是因为光源的不一样,紫外可见分光光度计也多了一个专门提供氘灯工作的氘灯电源了。

3、接收器的不同:由于紫外可见分光光度计多了紫外波,所以在接收器的选择上也就不一样了。多了对紫外波的灵敏响应功能,这类接收器的价格就比可见分光光度计的接收器贵了很多了。

如果你还想了解更多这方面的信息,记得收藏关注本站。